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Highly supersaturated electrolyte solutions can be prepared and studied employing an electrodynamic

levitator trap (ELT) technique. The ELT technique involves containerless suspension of a microdroplet
thus eliminating dust, dirt, and container walls which normally cause heterogeneous nucleation. This al-
lows very high supersaturations to be achieved. A theoretical study of the experimental results obtained

for the water activity in microdroplets of various electrolyte solutions is based on the development of the
Cahn-Hilliard formalism for electrolyte solutions. In the approach suggested the metastable state for

electrolyte solutions is described in terms of the conserved order parameter to(r,t) associated with fluc-

tuations of the mean solute concentration no. Parameters of the corresponding Ginzburg-Landau free
energy functional which defines the dynamics of metastable state relaxation are determined and ex-

pressed through the experimentally measured quantities. A correspondence of 96-99 % between theory
and experiment for all solutions studied was achieved and allowed the determination of an analytical ex-
pression for the spinodal concentration n,pm and its calculation for various electrolyte solutions at 298

K. The assumption that subcritical solute clusters consist of the electrically neutral Bjerrum pairs has
allowed both analytical and numerical investigation of the number-size Nc of nucleation monomers (ag-
gregates of the Bjerrum pairs) which are elementary units of the solute critical clusters. This has also al-

lowed estimations for the surface tension a, and equilibrium bulk energy/3 per solute molecule in the nu-
cleation monomers. The dependence of these properties on the temperature T and on the solute concen-

tration no through the entire metastable zone (from saturation concentration nsat to spinodal n,pi,) is ex-
amined. It has been demonstrated that there are the following asymptotics: Nc = 1 at spinodal concen-
tration and Arc= oo at saturation.

PACS number(s): 82.60.Nh, 64.60.My, 82.30.Nr, 82.60.Lf

I. INTRODUCTION

Let us consider a binary solution consisting of a strong
electrolyte and a solvent. Strong electrolytes when dis-
solved almost completely dissociate into ions. The ther-

modynamics of these electrolyte solutions are different
from the thermodynamics of nonelectrolyte binary solu-

tions. Electrolyte (ionic) solutions possess properties that
are absent in solutions composed of neutral particles.
Many of these properties are associated in some way with
the slow r - l decay of the Coulomb potential and the cor-

responding k -2 singularity in the Fourier transform.
The effect of the Coulomb interaction forces between dis-

solved ions was investigated by Debye-Hiickel [1]. They

demonstrated that the electrolyte solution energy E ac-
3 power of the meanquires a term proportional to the _-

solute concentration no. In binary nonelectrolyte solu-

tions all thermodynamic functions can be expanded in in-
teger powers of the concentration n o . It is straightfor-

ward to conclude that the problem of determining ther-
modynamic quantities of strong electrolyte solutions

reduces to the problem of a completely ionized gas which
has been thoroughly discussed in [1] for the case of dilute
strong electrolyte solutions.

The physical situation discussed in this paper corre-

sponds to highly supersaturated strong electrolyte solu-
tions. Although the problem is of scientific interest and
practical importance, to the best of our knowledge there

has been no attempt to provide theoretical insight as well

as to develop high-precision measurements.

It is well known [2-4] that a supersaturated solution of
a strong electrolyte is in a metastable state. Metastable

states are characterized by the permanent birth-death
process of subcritical solute clusters which are homo-

geneously and randomly distributed over the entire solu-

tion volume V. For these clusters it is energetically
favorable to dissolve rather than to grow. This situation
lasts until the critical or/and supercritical solute clusters

appear. For these clusters it becomes energetically more
favorable to grow than to dissolve and nucleation occurs.

The time required for a nucleation event to occur is
known as the nucleation induction time.

Let us consider an electrolyte solution containing n l,

n 2.... n s ions per unit volume of the various ion species
denoted by subscripts (1,2 ..... s) which possess the

charges ql,q2 .... qs, respectively. Using this notation
the condition of electrical neutrality of the electrolyte
solution acquires the form

$

niqi=O • (1)
i=l

The solvent in this description is treated as a continuous
medium, formed from neutral and polar molecules, which
is characterized only by its dielectric constant e. Since

the Coulomb forces act between all pairs of ions their

motion is not entirely random. As a result, the presence
of an ion at a given location in the solution will affect the
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spatial distribution of the other ions in its immediate vi-
cinity. Thus, each ion creates around itself a nonuni-

formly charged "ion cloud," which on average is spheri-

cally symmetrical. In other words, if we select any par-
ticular ion, say a j ion, as the center of the solution coor-

dinate system and consider the density distribution of
other ions relative to that ion, this density will depend

only on the distance r from the j ion to the ion con-
sidered. Thus, let the spatial distribution density hi(r) of
the i ion in the ion cloud at the spatial point with the ra-

dius vector r in the j-ion-centered coordinate system be

defined as follows (the subscript j is not attached to the i-

ion spatial distribution density ni(r) as well as to the elec-

trostatic potential q_i(r) at the/-ion location. However, it

should be kept in mind that these quantities are only
meaningful in the (moving) j-ion-centered coordinate sys-
tem):

n i = fvd3rni(r) .

The potential-energy density due to the electronic in-
teraction between ions and an electric field produced by

all the others ions around them is

U0(r) =- _ qini, oqgi(r) , qi=ezi , (2)
i=1

where z i is the i ion charge number and e is the unit posi-

tive charge. In this expression n;,0 is the mean/-ion con-
centration in solution and _0i(r) is the electrostatic poten-
tial at the /-ion location produced by all the other ions.
The electrostatic interaction between ions gives birth,

therefore, to the following correction Eco_( T, V) for the

electrolyte solution energy E ( T, V):

E( T, V)=E0( T, V)+Eoorr( T, V),
(3)

E_orr(T, V)= AUo( T, V),

where

AUo(T,V) =-V _, qini, o[q)i(r)--q_i,i(r)] , r=[rl •
i=l

The energy E(T, V) is defined for the case when all ions
bear their full charges ql ..... qs. The energy E0( T, V) is

the solution energy when all ions are completely

discharged and T is the solution temperature. For con-
venience, we exclude from the Ecorr(T, V) energy expres-
sion terms which arise from the ions electrostatic self-

energy. In these terms the potential q_i,i(r) is the

Coulomb field potential of the i ion itself.

II. THEORETICAL MODEL

FOR SUPERSATURATED ELECTROLYTE SOLUTIONS

Supersaturated electrolyte solutions are metastable

[2-4]. This means that the dissolved solute ions are asso-
ciated with each other in subcritical solute clusters.

These clusters appear due to local fluctuations of the
solute concentration n. It is energetically favorable for
subcritical solute clusters to dissolve rather than to grow.

This condition continues until the onset of nucleation,

when critical and/or supercritical solute clusters form.
For these clusters it is energetically favorable to grow

rather than to dissolve. In this way a one-phase metasta-

ble state of homogeneous supersaturated solution with
the mean solute concentration n o relaxes to a two-phase

stable state by forming a heterogeneous saturated solu-
tion with the solute concentration nsa t. The excess solute

concentration, An=no--nsat, goes into the creation of

solid phase. In this two-phase solution the critical and

supercritical solute clusters are identified with the stable
solute-rich phase whereas the solution itself is identified
with the solute-poor phase. The relaxation process from

the one-phase metastable state to the two-phase stable
state is known as nucleation. The next stage of the meta-
stable state relaxation is related to the growth of super-

critical solute clusters followed by their coalescence.

In this paper we are interested in the nucleation stage
of metastable state relaxation in electrolyte solutions.

The formalism describing this stage of relaxation is based
on the introduction of the local and time-dependent order

parameters toi(r, t) [3-6]. These order parameters can be
defined as the scalar functions:

mi(r,t)=ni(r,t)--ni, o ,

where ni(r,t) is the local current concentration of the i
ions. Therefore, the order parameters toi(r,t) describe

concentration fluctuations at the spatial-time location

(r,t). These parameters can be introduced for the both

phases: the symmetric one, which is associated with the
undersaturated homogeneous solutions, and the nonsym-
metric one, which is associated with the saturated-

supersaturated solutions. These parameters are random
quantities. Therefore, the experimentally observable

quantities are their expectation values (oi(r):

-- 1 to

mi(r)- _0 f0 dttoi(r,t),

where to is the macroscopic observation time (in the

metastable state to is less than the metastable state life-

time). These expectations are equal to zero:

ogi(r)=0 (i=1 ..... s) for the undersaturated states as
well as for the supersaturated states at the vicinity of

equilibrium (coexistence or binodal) line. This is under-
standable since the concentration ni(r,t) fluctuations

Ani(r,t) are negligible in these states and can be of both
signs with respect to n_(r,t) with the same probability.

Therefore, with good accuracy there exist the equalities

ni(r,t)=ni, o. However, the expectations toi(r) can be
nonzeros: (oi(r)=#0 for the supersaturated states at the

proximity of spinodal line due to the noticeable and non-
negligible local fluctuations at the vicinity of the region of

absolutely unstable states. The theoretical estimation of
the order of magnitude of the fluctuations An_(r, t) at the

proximity of spinodal line requires a separate study.
However, in order to justify the approximation of the

negligible fluctuations Ani(r, t) and, thus, the comparison
between theory and experiment presented in this paper
we have taken into account only those metastable states

in which all the performed measurements had a standard
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deviation within 5%.

Since the total solute concentration n as well as the i-

ion concentrations ni are conserved quantities, the order

parameters toi(r,t) are conserved order parameters as

well. This means that the following equalities exist:

0 IS/3,o,,r,t,]--0
The metastable state in solution is usually created by
means of a first-order phase transition, for instance by a

quenching procedure [2-4]. The nucleation stage of the
metastable state relaxation is described in terms of the or-

der parameters coi(r,t) relaxation. It is noteworthy that

one can consider the order parameter toi(r,t) relaxation

independently on the relaxation of other thermodynamic
quantities only under an assumption that the order pa-

rameter coi(r,t) relaxation time r i is large enough to

guarantee the existence of partial equilibrium for every
specific value of the nonequilibrium order parameter.

There are two approaches which describe the relaxation
of the order parameter toi(r,t). They are the Ginzburg-

Landau formalism developed for the case of noncon-
served order parameter [3-6,7] and the Cahn-Hilliard

formalism developed for the case of conserved order pa-

rameter [3-6,8,9]. The main assumption in both ap-
proaches is that nucleation can be associated with a

Markov's random process. In our case we will make use
of the Cahn-Hilliard formalism. Within this formalism

the nucleation stage of relaxation is given in terms of the

order parameters tot(r, t) relaxation equations:

atoi(r,t) F, V2 0F(to,_;t) i = 1, . ,s (4)
at = " atoi(r,t) ....

where

F(to, q0;t)= fvd3r F(to,_;r,t) I

In the above relaxation equations 1"i is the/-ion mobility

coefficient and F(to, q0;t) is the time-dependent Helmholtz
free-energy functional for the supersaturated electrolyte

solution. This functional describes the free energy of the
order parameter co subsystem and the ion cloud cp subsys-
tem which interact with each other at the given solution

temperature and volume. Therefore, the functional
F(co, q0;t) density F (co, qo;r, t) should contain the following
terms:

F(co, cp;r,t)=F(to;r,t ) + F(cp;r,t)+ Fint(co,cp;r,t) . (5)

In expression (5) the Helmholtz free-energy density
functional F(co; r, t) of the metastable co subsystem can be

presented as the following Landau expansion with respect
to even powers of the order parameters cot(r, t):

F(co;r,t)= _t=, 1_ [Vcoi(r't)]2nt,0 , #i2 t°2(r't)nt,0

+ 7/i co_(r, t ) I
4 n 3 j ' (6)

i,0

where the parameters B i are proportional to the square of

the correlation radii re, i [5]. These radii determine the
magnitude of distances at which the correlations of the

order parameters coi(r,t) fluctuations decrease

significantly. The parameters/z i and r/i determine boun-
daries of the to-subsystem metastable zone. Since the
functional F(to;r,t) does not contain interaction terms

between the various order parameters cot (r, t)
(i=1 ..... s) it is assumed that concentration fluctua-

tions of the ions of different kinds are independent.
Therefore, the functional F(co; r, t) represents the simplest

form for the to-subsystem Helmholtz free-energy density
which allows existence of metastability.

The q0-subsystem Helmholtz free-energy density func-
tional F(q0;r, t) has the form

1 12F(qo;r,t)=
2c-----T [ at , + u(qo;r,t),

U(q0; r, t)= ½[ Vq_(r, t)]2 ,
(7)

where c is the light speed in a solution. In this expression
the term U(qo;r,t) is the qo-subsystem potential-energy
density. It is assumed that (i) the qo subsystem, which is

described in terms of the scalar field qo(r,t) is always in

equilibrium, and (ii) the q_-subsystem equilibrium state
cannot be destroyed even by interaction with the co sub-
system.

The interaction term Fint(co,_;r,t) between the to and

q0 subsystems has the form

$

Fint(to,qg;r, t )= -- e---L-cp(r,t ) _, zitoi(r, t) , (8)
£OE t = 1

where e0 is the vacuum permittivity constant. Expression

(8) represents simple electrostatic interaction between the

ion-cloud potential q0(r, t) due to all kinds of ions and an
electric charge at the spatial-time point (r, t).

To complete the description of the interacting co and q_

subsystems one has to supplement E,q. (4), describing the
evolution of the parameters tot(r,t), with a similar equa-

tion for the ion-cloud potential qo(r,t). This can be done
by means of the Euler-Lagrange equation:

a 8A (to,_o;t) ] 8A (to,qo;t) 8A (to, qo;t)

Ot 8[acp(r,t)/at] J+V -- ,8Vq0(r,t) 8q0(r,t)

(9)

where A (to,_0;t) is the action functional for the supersa-

turated electrolyte solution. An expression for this func-
tional in terms of the notations introduced above is

straightforward:

A (to, q0;t)= fvd3r A (to,qg;r,t) , (10)

A(to'q°;r't)=_c 12 8_(r't)]2-U(q°;r't)at

--F(to;r,t)--Fint(to,qg;r,t) .

One can rewrite Eqs. (4) and (9) as follows:
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Ocoi(r,t) Bi 2 e
0t =l"i V2 ----V cgi(r,t)----ziq_(r,t)

hi, 0 E0E

o.. io..il+#i--+r/i -- , (lla)
ni, o [ hi,0

2 s
1 0 (r,t) 2 e

-- _ --V _0(r,t)=--_ ziogi(r,t) • (lib)
2c 2 at 2 E0E i = 1

Let us consider the joint solution of Eqs. (1 la) and (1 lb)

in the stationary limit. This limit corresponds to the es-

tablishment of partial equilibrium between solution and
subcritical ionic clusters. Characteristic times r i

(i = 1,2 ..... s) needed to establish the partial equilibri-
um should be much less than the induction time. Thus, in

the stationary limit, i.e., under the conditions that

Otoi(r,t)/Ot = 0 and Ocp(r, t)/Ot = O, the spherically
symmetrical solutions qo(r) and toi(r) satisfy the following

equations:

Bi 2 e t°i(r)
V (Di(r) -- --ziq)(r) q-_l i

hi, 0 EOE hi,0

I°/'r'+_i [ ni, o =0, (12a)

V2q_(r)=_ e _ zio)i(r) . (12b)
E0 E i = 1

It is noteworthy that the last equation coincides with the

electrostatic Poisson equation [1].

The properties of the _osubsystem which are described
in terms of the Landau time-dependent Helmholtz free-

energy density functional F(a_;r,t) are well known near

the critical point [5,7]. There is a critical point if and
only if the coefficients #i =- I_,-I are less than zero

(#i <0). As it follows from the general order-parameter

formalism [5,7], the square of the correlation radii re, _

can be defined in the form r_i=Bi/(2[l_i]). Therefore,

the term (Bi/gi)V2co(r) is proportional to the ratio

(rc/li)2, where the length l i characterizes the distance at

which the field co_(r) changes significantly. In order to
evaluate the ratio rc/1 i let us assume that the following
conditions are satisfied.

(i) The metastable state is far from a critical point, i.e.,

r_ << oo. This is usually the case for electrolyte solutions
of lower molecular weight solutes. In such solutions the

critical point has never been observed under normal pres-
sure.

(ii) The critical radius of nucleation R_ is much greater

than the correlation radii r_,i (R_ >>re, i ). The opposite

case when R e =r_, i corresponds to the unlikely situation
of immediate nucleation (zero induction time) after the
solution enters the metastable state.

Under these conditions the ratio r_,i/l i is small:

r_,i/li<<l, since Rc_l i. Therefore, Eq. (12a) can be
simplified as follows:

r/i aJ_(r)
toi(r) a t -- Fi( r) ,

_i n2i,o (13a)
e

Fi(r) = --zini, ocp(r) .
eoe#i

Let us seek for solution of Eq. (13a) in the following form:

_oi(r) = _ _i o_i,m (r) " (14a)
m=0

The ratios Pi/'qi determine the equilibrium values coi,_ of

the order parameters o)i(r): o)i, cq/ni, o= (#i/rli )1/2, where
i = 1 ..... s. The Landau order-parameter formalism for
the Helmholtz free energy is correct only if the

Ginzburg-Levanyuk criterion [10,11] is satisfied. This

criterion requires that the equilibrium values oJi,eq of the
order parameters coi(r) must be much greater than their
standard deviations:

/'_-.-_-/>> 7 ( Acoi(r I )Aogi(r 2 ) )

rli hi, 0

/.ti (o9i(rl)coi(r2 ) )
-- --1

r/i cO2eq

From the above criterion it follows that Irli/2#it<< 1.

Therefore, considering expansion (14a) it is natural to

keep only the first two terms which can be found in the
following form:

F3(r)

tOi, o(r)=Fi(r) , (oi, l(r): 2ni20 (15)

The next step is to substitute solution for the order pa-

rameters Col(r) given by expressions (14a) and (15) into

the Poisson equation (12b). This substitution leads to the
following second-order nonlinear ordinary differential

equation for the scalar field q0(r):

V2_(r) _ xEqg(r) + K2q93(r) , (13')

where

x_= e /2_ z/2-- -- --hi o

E0E J i=1 gi '

[e_____14 _ [__/14e Zi
K 2 = 1"]i hi, 0 •

i=1

It is noteworthy that under the condition r 2 <<r_ one can

reduce the approach developed for supersaturated elec-
trolyte solutions to the limiting case corresponding to un-
dersaturated electrolyte solutions. Analytical solution for

this limiting case was given by Debye and Hiickel [I]. In

order to obtain the complete correspondence between the
reduced (r 2<< r 2) equation (13') and the Debye-Hiickel

result for the equation determining the ion-cloud poten-

tial q_(r) in undersaturated electrolyte solutions one has
to specify the parameters #i of the Landau free-energy
functional (6) as follows:

_i =_'_= --I_1, =kT.

Thus, this specification has allowed us to determine pa-

rameters #i of the Landau free-energy functional in the
temperature region remote from the critical point.

Therefore, in order toreduce Eq. (13') describing the
case corresponding to saturated-supersaturated electro-
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lyte solutions to undersaturated electrolyte solutions it is
necessary to impose the following constraints on the

Ginzburg-Landau parameters p; and _i: (i) the parame-

ters Pi are the same for all kinds of ions and are equal to

--kT, and (ii) the parameters _7i are all equal to zero

(_/i=0). These constraints are very natural since they
eliminate the nonlinear terms from the Helmholtz free-

energy density function F(_o;r,t) [see expression (6)] re-

ducing it to the expression corresponding exactly to the
Helmholtz free-energy density function of the undersa-

turated electrolyte solutions [l]. Thus, in terms of Eq.
(13') the effect of the electrolyte solution metastability is
given by the non-linear term proportional to _v3(r).

Let us seek for solution of Eq. (13') at the/-ion location
in the following form:

q)(r)=q_i(r) = _ (e2g2)mq_i,m(r), (14')
m=O

where e2K2 is the dimensionless parameter. Substitution

of this expansion into Eq. (13') allows us to find its first
terms in the form

Z i A -KIr e rlae
-- A --

q3i, o(r) :e [ 4_reoe r ' 1+rla

_fir

I z i.4 3E2(2rla) e

q_i,t(r) = --e [ 4_.e0e 2rla r '

--zt

E2(z)= fl®dt erE ,

where a is the minimum average distance to which ions,
both positive and negative, can approach one another.

Assuming now that the constant e2x 2 is much less than

unit2(e2r2 << 1) (This assumption will be verified in See.

VII) one can present the result for the potential q_i(r) of

the supersaturated electrolyte solution as follows:

q_i(r)=e [ 41re0e 1 -e2r2 [ 4_'e0e 2rla r

+o[(e2x2) 2] • (16)

It is noteworthy that within the approach developed for
supersaturated electrolyte solutions the effect of solution

metastability leads to simple renormalization of the po-

tential q_-(r) constant leaving the potential q_i(r) function-
al dependence on r the same as it is for the undersaturat-

ed electrolyte solutions.

J

F ( T, V) = _( T, V) + V _ [ kTni, oln(ni, o) + _i( T, V)n_,o ]
i=l

IH. THERMODYNAMICS OF THE SUPERSATURATED

ELECTROLYTE SOLUTIONS

Let us return to expression (3) for the solution energy
E (T, V). It follows from the previous considerations that

(i) E0( T, V) can be identified with the energy of the un-

dersaturated electrolyte solution consisting of discharged

ions, and (ii) the energy E(T,V) corrective term
Ecorr( T, V) describes the combined effect due to the elec-

trostatic interaction between the charged solute ions and

the solution supersaturation. Thus, substituting into ex-
pression (3) result (16) for the potential _.(r) it is straight-

forward to obtain the following expression for
Ee_rr ( T, V):

e 4K 2 4---_EOE 2a i = 1

(17)

where the temperature-dependent expressions for r I and

r 2 are given by relations (13').
The Cahn-Hilliard formalism introduced in Sec. II im-

plies that partial thermodynamic equilibrium exists in a
metastable state. For the case of nucleation, the lifetime

of this partial equilibrium can be associated with the in-
duction time. Therefore, within the induction time all

equalities of equilibrium thermodynamics exist including

the relationship between the solution energy corrective
term E_orr( T, V) and its Helmholtz free energy F( T, V):

Ec°rr(T'V) --72 OTO [ F(T'V)--F°(T'V) ] " (18)Tv

In this expression F0( T, V) is the Helmholtz free energy
of undersaturated electrolyte solution consisting of

discharged ions:

Fo( T, V)=e( T, V)-k V _ [ kTni, oln(ni, o)+ ni,o_i( T , V)] ,
i=1

where _(T, V) and _i(T, V) (i = 1..... s) are some con-

stants at the given temperature and volume. Integration

of relationship (18) gives the following result for the
Helmholtz free energy F( T, V):

..[ Ve 3A [i___lZi2ni, ol 3/2 VeSA3E2(2ffla) Ii____lZi41,1i, o?.]il[i_=lZi4ni, o].12_r(k T)l/2( e0 e )2 1280"rr3( k T)4(eoe )Ta
(19)

This expression can be simplified by taking into account

that the distance a is usually much less than the length
1/r t (a << 1/x l) which characterizes the dimension of

the ion cloud of a given ion. Therefore, since ar I << 1

there exist the approximations

E2(2rla )_ l , A _- I .

Using these approximations, the expression for the/-ion
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chemical potential derivative dpi(T)/dn`.,o in the supersa-
turated electrolyte solutions acquires the form

d/z,.(T) _ 1 02F( T, V)

dni. 0 V On20

__ kT ! _, z2n`.,o
ni, o 167r(kT)l/2(e-oE) 2 i=l

(zie)8*/i
-- (20)

640_r3(k T)4( EOE:)70 "

IV. SPINODAL CONCENTRATION FOR THE CASE

OF BINARY SYMMETRICAL
ELECTROLYTE SOLUTIONS

Let us consider the case of binary ( i = 1,2) symmetrical

(Za =-z2 = Izl) electrolyte solutions where the equality

nl,o=n2,o=no is true. In this case the Gibbs-Duhem re-
lationship (which is valid at the states of complete and

partial equilibriums) acquires the form

d#stv(T, no) no d#l(T, no) d/z2(T, no) ]

N dn ° 2 dn ° t dn ° ] ,

(21a)

where/zstv( T, no) is the solvent chemical potential and N
is the number of solvent molecules per unit volume.

Analyzing expression (20) for the binary symmetrical un-
dersaturated electrolyte solutions (,/1=,/2=0) leads to

the following equality:

d/zl(T) _ d/z2(T) _ d/zslt( T, n o )

dn 1,o dn2,o dno '

where /zstt(T, no) is the mean solute chemical potential.

In order to keep this equality for supersaturated electro-

lyte solutions one has to require that the parameters */1

and *12 of the co-subsystem density functional (6) have to

be the same */I =7/2=_/for both kinds of ions. Under this

requirement the Gibbs-Duhem relationship for the
symmetrical supersaturated electrolyte solutions acquires
the form

d/zstv( T, n o ) du sit( T, n o )

N dn ° -- n o dno , (21b)

where

d/zslt(T, no ) _ kT _ (Izle) 3 ]dno no 167r(2kT)1/2(eoe) 2 no 1/2
)

(Izle)S_/

640_r3( kT)4( eoe)Ta •

In this paper we are interested in the solvent activity

_.sl_(T, n o ) for which there exists the following expression:

Ksl"(T'n°)=Ksl':(T'O)exp kTNl fo°dn'n'd/zsu(T'n') ]dn'' (22a)

where Lslv(T,0) is the activity of pure solvent. Carrying out integration in expression (22a) we obtain the following rela-

tion for the activity Ksl_( T, n o ):

K_lv(T, no)=Ks,,,(T,O)expl--llno 4 2'/2('zle)3 n3o,2- (zle)8_! n2o] I . (22b,481r( k T)3/2( EOE)2 1280"tr3( k T)s( eoe )Ta

The contribution due to the electrolyte solution metasta-

bility comes in the form of the third term in the exponent

of expression (22b).
It is well understood [3-6] that at the concentration

no=nspin(T) corresponding to the spinodal line (line
which separates metastable and unstable states) at the

given temperature T is where the first derivative
d/zslt( T,n o )/dn o of the solute chemical potential

/zslt( T, no) with respect to the solute concentration n o be-

comes equal to zero:

d/zslt(T'n°)dn° no=nspin(T)=0"

Substitution into this equation of result (21b) for

d/zslt( T,n 0 )/dn o allows derivation of the following equa-

tion for the spinodal concentration nspin( T):

t

kTq
(Izle) 3 1/2

16_(2kT) 1/2(Eoe )2 n spin(T)

( Izle)S*/ nspin(T) =0 . (23)
640'rr3 ( k T)4( e0 E)7a

Solution of this simple square equation with respect to
n l/2, T) and its numerical estimations for various electro-

spin t

lyte solutions will be given in See. VII.

V. SUBCRITICAL SOLUTE CLUSTERS,

THEIR ASSOCIATION DEGREE,
AND NUCLEATION MONOMERS

In the simplest model of electrolyte solutions the dis-
solved ions can be considered as rigid unpolarized

spheres contained in a medium of the fixed macroscopic
dielectric constant e. In this description the nonpolar

quantum bonds between ions as well as the ion-solvent in-
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teractions are neglected. Within such a model Bjerrum

has assumed that two ions of the opposite electric sign at
the distance r<r_=(Iz[e)2/(2eoekT) are associated

[12], i.e., from the Bejerrum electrically neutral pair. If
the ions are of like sign the probability of their associa-
tion is very small.

The solution metastable state is characterized by the
appearance of subcritical solute clusters. Let us assume

that these clusters are associations of the electrically neu-

tral Bjerrum pairs. In general, such associations, being
electrically neutral, may possess dipole moments. How-

ever, in this paper it is assumed that the dipole moment
of a subcritieal solute cluster, averaged over its lifetime,
is zero due to the translational and rotational diffusions

of these clusters. Thus, an interaction between the clus-

ter dipole moment and the gradient of the ion-cloud po-
tential, averaged over the cluster lifetime, can be neglect-
ed. Therefore, within the suggested model the suberitical

solute clusters can be treated as electrically neutral with

zero dipole moments associations of the Bjerrum pairs.
For such clusters it is natural to assume that their associ-

ated ions do not contribute the correction energy term
Ecorr(T, V) for saturated and supersaturated electrolyte
solutions [see expression (3)]. Thus, relation (17) for the

case of saturated and/or supersaturated solutions can be

presented in the following simple Debye-Hiickel form:

Ecorr(T,V)----Ve2r_ [4-_o e _,z2n"i i,O '

i=1

e I z,.1r_ Eoe(kT)l/2 i=1 i i.o ,
L J

where ni*o is the number of i ions which are nonassociated
into the Bjerrum pairs.

Let us consider as in the preceding section the case of

binary symmetrical electrolyte solutions (n 1,0= n 2,0= n 0,
*h=_2=_/). Equating in this case expressions (17) and

(24) for the solution energy E(T, V) corrective term

Ecorr( T, V) it is straightforward to find n_ as the function
of the solution temperature T and the mean solute con-
centration no:

n_ =n_(T,n o)

16V'2_r2(kT) 7/2a [ eoe

Therefore, the number ncl( T,n 0 ) of ions associated in the

Bjerrum pairs can be determined by the following equa-
tion:

n*l(T,n o) n_(T)
d(T, no) = --1

nO n o

=1- 1 f_oE

(26)

The ion association degree introduced in this equation,
d (T,n o ) determines the probability that an arbitrary ion

belongs to the Bjerrum pair. This probability has the lo-
cal maximum equal to unit [d(T, no) = 1] at the solute

concentration equal to n0,max( T):

EOE 10 ] 2 .no, max(T)=512zr4(kT)7[ze ] [-_ (27)

The temperature-dependent solute concentration

n0,max(T) corresponds to such a metastable state when all

ions are associated into the Bjerrum pairs. This means

that at the concentration n0,max(T) the electrolyte solu-
tion converts into a nonelectrolyte solution since all the

ions become associated in the electrically neutral Bjerrum

pairs. As the solute concentration n o is increased fur-
ther, single ions appear until the spinodal concentration

nspin(T) is reached.
In the classical approach to statistical mechanics of

clusters [13] it is assumed that the Helmholtz free energy

FI(T,n o ) of the cluster containing I particles (in our case

containing l Bejerrum's pairs) has the following form:

Ft(T, no)=kT[a(T)12/3+/3(T)l--ln(no)l] , (28)

where n o is the mean concentration of solute molecules,
a(T) is proportional to the surface tension, and/3(T) is

the equilibrium bulk energy per solute molecule in the

solute-rich phase (in clusters). Therefore, expression for
the Helmholtz free energy describes subcritical solute
clusters as an open (grand) canonical ensemble of the

Bjerrum pair associations where only the average, rather

than the exact number of the associated pairs, is specified.
This means that the solute clusters, the Bjerrum pair as-
sociations, can exchange the pairs between themselves as

well as with the solute-poor phase (solution). In such a
treatment of the Helmholtz free energy the term

kT ln(n o ) corresponds to the chemical potential [4,5] of a

single Bjerrum's pair in the solution. The grand partition
function -(T,n o) of the ensemble of subcritical solute

clusters is equal, by definition, to the ion association de-
gree d(T, n o ) and can be presented as follows:

Nc(T,n O)
-FI{T, no)/kT

=-(T, no)=d(T, no)=const× _, e
1=1

(29)

where const is the normalization constant and No( T,n o )
is the number size of nucleation monomer which is tem-

perature and solute concentration dependent. In expres-
sion (29) we account only for the noninteracting nu-

cleation monomers (elementary solute units appearing in
the result of nucleation), aggregations of which constitute
critical solute clusters. When the number of the Bjerrum

pairs associated in any subcritical solute cluster reaches
Nc(T, no), the nucleation onset begins and nucleation

monomers form. Equation (29) represent a classical point
of view for the nucleation of subcritical solute clusters

[2-6,13]. This equation being combined with result (26)

for the association degree d(T,n o), obtained within the
nonclassical Ginzburg-Landau formalism [3-7], allows

determination of such classical concepts as the surface
tension a(T) and the equilibrium bulk energy 13(T) as
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well as the number size Nc(T,n o) of nucleation mono-

mers. Estimation of these concepts will be given in Sec.

VII.

VI. EXPERIMENTAL STUDY

OF SUPERSATURATED ELECTROLYTE SOLUTIONS

In order to experimentally investigate properties of

highly supersaturated solutions it is necessary to elimi-

nate heterogeneous nucleation. For this purpose the elec-

trodynamic levitation technique has been developed

[14-16] in order to measure the microdroplet solvent ac-

tivity _.slv( T, n o ) as a function of the solution temperature

T and the mean solute concentration n o. In this tech-

nique a micrometer-sized solution droplet is produced by

the particle generator and after being electrically charged

it is injected inside the electrodynamic levitator trap

(ELT), which is incased in a vacuum chamber. The ELT

consists of three electrodes. In our experiments per-

formed with the spherical void electromagnetic levitator

trap (SVELT) [17-21], the top and bottom electrodes are

spheriods of revolution and the center electrode is torus

having a spherical cross section. The time-varying volt-

age Vac(t) is applied to the torus and, relative to the top

and bottom electrodes interior, a nearly perfect oscillat-

ing quadrupole potential is produced. This potential,

even being quite moderate, forces the electrically charged

solution microdroplet to oscillate vertically along the

SVELT axis and below its geometric center. Introduc-

tion of the constant voltage Vdc, which is divided equally

between the top and center, and the center and bottom

electrodes produce a static interior potential. This poten-

tial balances gravity at the SVELT null point and, thus,

allows the microdroplet to be brought to the SVELT

geometrical center where the ac potential

Fac(t)_cos(2zrvt) is zero and the microdroplet comes to

rest. A diagram of the experimental setup after the solu-

tion microdroplet being injected is shown schematically

in Fig. 1. Thus, since the suspended solution microdrop-

let is containerless (free of foreign surface) the very high

supersaturations can be achieved before the nucleation

onset starts. In this way Rubel [14] measured the water

activity at supersaturations as a function of solute con-

centration for aqueous phosphoric acid solutions using a

bihyperboloidal electrodynamic balance trap in a con-

tinuously flowing system. Using almost the same experi-

mental setup, Tang and co-workers [15] measured the

water activity of the supersaturated aqueous electrolyte

solutions of sodium chloride NaC1 and potassium

chloride KC1. Richardson and Spann [16] used the ELT

technique to study the water activity of aqueous solutions

of ammonium sulfate (NH4)zSO 4. In the present study

we have investigated water activity of the highly supersa-

turated aqueous electrolyte solutions of sodium bromide

(NaBr), potassium chloride and bromide (KC1 and KBr),

and ammonium chloride and sulfate [NH2CI and

(NH4)2SO4].

For a stationary microdroplet trapped in the SVELT

null point its weight mg is balanced by the opposing elec-

trostatic force qVdc:

Drive Pulse _1__
piezoelectric

ceramic

V /2
dc

Thermistor

v Cos(cat )
ac

Charging

Voltage

Vacuum

Chamber

- V /2
dc

I Ar + Laser
I Mirror

Capacitive

Monometer

Vacuum Pump Salt Solution in
Const. Temp. Bath

FIG. I. Schematic drawing of the SVELT experimental ap-

paratus.

mg = C q Vdc ,

Z0

where q is the microdroplet electrical charge, 2z 0 is the

distance between the SVELT spheroid electrodes, and C

is the SVELT geometrical constant. Thus, by means of

this equation and under an assumption that the micro-

droplet charge remains unaltered during an experiment

the relative microdroplet mass changes can be easily

determined by measuring the balancing dc voltage Vdc re-

quired to balance the weight mg of the charged solution

microdroplet. The assumption of the constant micro-

droplet charge q can be easily verified in each experiment.

This allows us to express the microdroplet solute concen-

tration n o as follows:

f i rwet ] -- I

1000 I " dc _ 1 I (in molal units) ,

where (Mw)slv is the solvent molecular weight

[(Mw)water =18], and trwet and trdry--de --ac are the balancing

voltages for the solution (wet) and anhydrous (dry) micro-

droplets, respectively.

The two, experimentally justified, assumptions that (i)

solute is nonvolatile, and (ii) the solution microdroplet is

in equilibrium with its vapor, allow us to achieve the

desired mean solute concentration n o inside of the solu-
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tion microdroplet by adjusting the humidity of the
SVELT chamber vapor. Assumption (ii) means that the
chemical potentials L/tslv(T,n 0) and la_v(T,n o) of the sol-

vent in the liquid (solution) and gaseous (vapor) phases
are equal. Therefore, the corresponding activities

_.s_v(T, n 0 ) = _.s_v(T, 0)exp [/.t s_v(T, n o )/k T] and 3.s_v( T, n 0o )

_--Lsl_(C T,O)exp[#_,,(T, no)/kT] are also equal. Assuming

that solvent vapor can be considered as an ideal gas it is
straightforward to demonstrate that [22]

_-s_v(T, n0) _ _.s_v(T, n0 ) _ P(T, no)

_vIL0) _vIr,0) P(_,0)

P(T,n o )

-- P_at(T ) --RH(T, no), (30)

where P(T,n o) and RH(T,n o) are the pressure and the

relative humidity, respectively, of the solvent vapor

which is in equilibrium with the solution microdroplet of

the mean solute concentration n o and P( T,0)=Psat (T) is
the pressure of solvent vapor which is in equilibrium with

the pure liquid solvent [this pressure is the solvent vapor
saturation pressure Psat(T) at the given temperature T].

In reality, the solution solvent activity is dependent on
the microdroplet surface curvature and charge. Howev-

er, these effects are known to be insignificant for the size
of the microdroplets being suspended [14].

The mean solute concentration n o and the correspond-

ing solution water activity 3._v( T,n o) can be easily deter-

mined by measuring the balancing dc voltage Vdc and the

chamber vapor pressure. Once a microdroplet is caught
and centered at the SVELT null point, the chamber can

be evacuated. After the voltage Vdc of the dry micropar-
ticle is recorded, solvent vapor above the vapor reservoir
is allowed to bleed back into the chamber until the solid

microparticle is transformed into solution microdroplet.
The second evacuation is then commenced at a slower

rate by adjusting the needle value. This procedure in-

creases the solute concentration n o and thus leads to

deeper penetration into the supersaturated (metastability)
region. Evacuation is continued at the slower rate until

the crystallization point is reached. At that chamber

pressure the balancing dc voltage Vdc drops precipitous-
ly. After crystallization the evacuation is continued to

ensure that there has been no charge loss during the cy-

cle. Therefore, the described experimental procedure al-
lows continuous recording of the chamber pressure
P( T,n o) and the voltage Vdc with the microdroplet at the

SVELT geometric center.

As a result of the solvent vapor evaporation, the
balancing de voltage Vdc decreases steadily and the solu-

tion microdroplet becomes supersaturated and eventually

crystallizes. This measurement is repeated several (usual-

ly three) times to ensure the reproducibility for the given
solution microdroplet.

In our experimental study we have investigated the
SVELT confined microdroplets of aqueous electrolyte
solutions of sodium bromide (NaBr), potassium chloride
and bromide (KCI and KBr), and ammonium chloride

and sulfate [NH2CI and (NH4)2SO4] at the temperature

T=298 K. The relative humidity R#(T,n o) has been

measured versus the mean solute concentration n o in the

wide range An = n 0- n sat corresponding to the high solu-

tion supersaturation (n o >nsat, i.e., to the deep solution

metastable states). Experiments with all solutions were
performed three times under the same conditions in order

to guarantee reproducibility. It has been observed that
the standard deviation trRH( T,n o) of the relative humidi-

ty RI4(T,n o) is a growing function of n 0. Deep penetra-
tion into the zone of metastable states was accompanied

by an increase of ORn(T,n o). This behavior of the stan-

dard deviation CrRH(T,n 0) at high supersaturations is a
result of local fluctuations of solute concentration and is

discussed in [23]. The increase is conditioned by the cor-
responding increase of fluctuations of the local solute

concentration n (r) with approach to the region of unsta-
ble states (to spinodal line). Therefore, we have retained

only the RI_( T,n o) data where the standard deviation is
within 5%.

VII. RESULTS AND CONCLUSIONS

Figures 2 and 3 show the averaged (over three trials)

experimental data for the relative vapor humidity
Rn( T,n o) (square points) versus the solute concentration

n o obtained in the SVELT experiment with aqueous mi-

crodroplets of the ammonium sulfate and ammonium
chloride. Theoretical treatment (solid line) of these data

is based on our results presented in Sec. III. According

to result (21b) for d/.ts,(T, no)/dn o and relation (30) for
R_(T,n o) there exists the following expression for

Rn(T, no):

--(Mw/lOOO)nod T'no) (31)Rtt(T, no)=e

where

21/2(Izle)3 (Mw)sr., ]1/2_b(T, no)= 1 +
48_(kT)3/2(EoE)2 _ Nn°

([zle)Sr/ [_Nn o1280¢r3(k T)5(e0e )Ta

In the above expression tb(T,n o) is the solvent osmotic

coefficient and the solute concentration n o is given in

molal units [n0(in number density units)=(Mw)_l_

×n0(in molal units)/1000]. The experimental data for

the relative humidity at the temperature 298 K are extra-
polated by means of expression (31) in which the solvent

osmotic coefficient _b(n o ) assumes the following form:

_b(T, n0)= 1+cl( T)n_/2 -c2( T)n o ,

where

(32)

1/2

21/2(]zle) 3 (Mw)sly

cI(T)= 48,tr(kT)3/2(eoE) 2 1000 N ,

(rzle)Sr/ (Mw)slv ]¢2(7) =

12807r3(kT)5(eoe)Ta 1000 N_ .

The numerical expressions for the temperature-dependent
coefficients ct(T) and c2(T) can be found by the least-
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FIG. 2. Dependence of the relative humidi-

ty RH( T, no) of the chamber solvent vapor on

the mean solute concentration no of the

SVELT confined solution microdroplet. The

RH( T, n0) measurements correspond to

T=298 K. Square points represent experi-
mental data standard deviation which is within

5% for each no value. The solid line is the

theoretical restoration of the obtained experi-

mental data for supersaturated aqueous solu-
tion of ammonium sulfate.

square method applied for the experimentally obtained

data for RH(T,n o) versus n 0. These constants for each

system are presented in Table I. The error A (T=298 K)

of the experimental data Ru(T,n o) restoration with the

help of expressions (31) and (32) is very small (within 5%)

for all the solutions investigated (see Table I). Figures 2

and 3, for example, give comparison between experiment

(square points) and theoretical (solid line) restoration by

means of the results of (31) and (32) for microdroplets of

supersaturated aqueous solutions of ammonium sulfate

and ammonium chloride, respectively. In these cases the

errors Aammo n sulf (T=298 K)=4"2929% and Aammo n chlor

( T=298 K) = 1.4568%.

The analytical expressions (32) obtained for the experi-

mentally measured quantities c t(T) and c2(T) allow the

rewriting of Eq. (23) for the spinodal concentration

nspin(T):

1 + {c]( T)n spinl/2( T)_½c2(T)nspin(T)=O. (33)

Solution of this equation is given by the expression:

nspin(T)=2+ 9 [c](T)]2

ic--- T .
Numerical results for the spinodal concentrations

nspin(T) at T=298 K for various solutions are given in

Table I. It is noteworthy that in the SVELT performed

experiments with suspended microdroplets we could

reach almost spinodal concentration for the supersaturat-

0.8

0.7

0.6

0.5

0.4

So_ Comce_zt_on n (in_ units)

FIG. 3. Dependence of the relative humidi-

ty Rlt(T,n o ) of the chamber solvent vapor on

the mean solute concentration no of the

SVELT confined solution microdroplet. The

RH( T, no ) measurements correspond to

T=298 K. Square points represent experi-
mental data standard deviation which is within

5% for each no value. The solid line is the

theoretical restoration of the obtained experi-

mental data for supersaturated aqueous solu-

tion of ammonium chloride.
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TABLE I. (Mw)slt is the solute molecular weight, the concentrations n,t , nspi,, and n0.ma, are in
molal units. All data correspond to and measurements are obtained at T=298 K.

3933

No. Solute (MH)sit Z nsa t nspin nO .... Cl C2 A (%)

1 NaBr 103 2 9.1835 62.4646 34.7655 1.1660 0.1187 2.5267
2 KC1 75 l 4.7826 122.5536 63.9105 0.5586 0.0419 1.7180
3 KBr 116 I 5.6962 66.2428 34.3240 0.7355 0.0753 0.9711
4 NH2C1 54 1 7.2733 34.7944 15.8927 0.6152 0.0926 1.4568
5 (NH4)2SO4 132 1 5.7854 69.6309 34.2379 0.5671 0.0581 4.2939

ed aqueous solution of ammonium chloride. For this

solution the averaged nucleation event occurred at
n (T=298 K) = 33.64 (in molal units) whereas the

analytically derived result for nspin (T=298 K) = 34.79.

Therefore, the experimental data obtained for supersa-
turated aqueous solutions and its treatment within the

theoretical approach have provided a unique opportunity

to calculate spinodal concentrations at any temperature
and, thus, to calculate zones of metastable states.

In Sec. V we obtained the result that within a region of
the electrolyte solution metastable states there is a partic-

ular concentration n0,max(T) when the supersaturated
electrolyte solution experiences a dramatic decrease to
zero of its electrical conductivity. At this concentration
the solution becomes nonconductive since all ions become

associated into electrically neutral Bjerrum's pairs and
their associations. Further penetration into metastable

zone leads back to the appearance of free ions and, thus,
to nonzero conductivity. Expression (27) for the concen-

tration n0,max(T) can be rewritten in terms of the experi-

mentally obtainable coefficients c1(T) and c2(T) , given by
relations (32), as follows:

[ 3cI(T) 12n0'max(T)= 15C--_ " (35)

Numerical results for the concentrations no, max(T) at
T=298 K for various solutions are given in Table I. The

theoretical effect of zero conductivity of the supersatu-

rate electrolyte solutions at the concentration no, max(T)
can be independently verified in the SVELT experiments
with confined solution microdroplets [24]. We are plan-
ning to perform these experiments in the near future.

The calculated association degree d( T,n 0) as a function

of the solute concentration n o at T=298 K is given in
Fig. 4 for aqueous supersaturated ammonium sulfate
solution.

The formalism developed in this paper allows the ex-
pression of the Landau parameters # and 7/ of the to-

subsystem free energy in terms of the experimentally
measured coefficients c l(T) and c2( T):

10zrcu 2( T)( e0e )3(k T)2

_=-IkTI, rt= 9c2(T)(izje) 2 a,

where coefficients c l(T) and c2(T) are given by expres-

sions (32). With the help of this result one can justify the
assumption employed in Sec. II that e 2x2 << 1:

(e 2x2 )max = A( T)a ,

2560/r3c2 ( T)( eoe )3k Tnspin ( T)
A(T) =

Izr4e2

Calculation of the coefficient A(T) results in very small
values for all systems studied. For example,
Aammo n sulf(T) _ 10 -6.

1,2

0.8

0.6

0.4

association degree (dimensionless), d(T = 298 K, no)

0.2

FIG. 4. Dependence of the association de-
gree d(T, no) on the mean solute concentration

no at T=298 K for supersaturated aqueous
solution of ammonium sulfate.

o . . .
5 n.w 25 n ,. 45 65 n_.,.

solute concentration (in molal units), n o
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Phase separation (nucleation) results in the formation
of the new stable solute-rich phase in the form of critical
solute nuclei (clusters). In general, these clusters are ag-

gregates of interacting monomers (nucleation monomers)
which can be treated as elementary units appeared in the

result of phase separation. The critical clusters have a

quite complicated internal structure investigation of
which requires a separate study. However, estimation of
the number size of nucleation monomers which we call

the critical number size Nc(T, no) can be carried out

within the approach suggested in this paper. Since the
direct calculation of the finite sum in expression (29) is

impossible, it is of use to estimate its lower Nc, min(T, no)

and upper Nc,mu( T, no) limits of the critical number size

Nc(T, no). To perform these estimations we introduce
the following natural constraints imposed on Nc(T, n o ):

Nc( T, nsat(T))= oo , Nc( T, nspin(T)) = 1 .

The meaning of these constraints is straightforward: the

infinitely retarded nucleation at the saturation concentra-

Nc, min(T, no )=
1

In

tion nsat(T) requires spontaneous birth of the nucleation
monomers of infinite number size, whereas at the spino-

dal concentration nspin(T), where phase separation occurs
instantaneously, the nucleation monomer number size is
equal to 1. The last statement means that at the spinodal

concentration nspin(T) the monomers of the new solute-
rich phase are rather single Bjerrum pairs than their ag-
gregates. It is well known that at the spinodal concentra-
tion these monomers (in our ease single Bjerrum's pairs)
form infinite critical clusters [8,25]. The structure of
these clusters was substantiated to the ramified (fractal)

[25]. Estimation of Nc,min( T, n o ) implies that the equilib-
rium bulk energy fl(T)l of nucleation monomer is much

greater than its surface energy a(T)l 2/3, i.e.,
r( T)l 1/3 >>a(T), whereas estimation of Nc.ma_( T, no ) re-

quires an assumption that these energies are of the same
order: r( T)l 1/3 _ a(T). Therefore, valuation of relation
(29) under the above constraints allows us to find expres-
sions for the lower and upper limits of the critical num-

ber size N c( T, no ) in the forms

J

nspin(T) d(T, no)

d(T, nspin(T)) nono

In[ n---_ ]

1 [ nspin (T) d(T, no)

Nc, max(T, no )= ln[_(T)no] In [1 d(T, nspin(T) ) no

(36a)

-- [1--g(T)n0] } ,
(36b)

where

gIT)=
1 1 d(T, nspin(T))

nsat(T) nspin(T) d(T, nsat(T))

In the above expressions nsat(T) is the solute concentra-
tion at saturation (see Table I). The obtained experimen-

tal results at T=298 K allow us to investigate how the

lower Nc,min(no)=Nc, min (T=298 K, n 0) and upper

Nc, max(no )= Nc,ma:, (T=298 K, n o) limits of the critical
number size Nc(n o) depend on the solute concentration

no. This requires substitution into expressions (36a) and

(36b) of result (34) for nspin(T) and table values for

nsat(T) as well as relation (26) calculated for the given

n,pin(T) and nsat(T). Figure 5 gives the dependence of
Nc,rmn(n o) and Nc, max(n O) on n o in the range [nspin,nsat ]

for the aqueous supersaturated electrolyte solution of am-
monium sulfate. In Table II there are values for

Nc,min(n o) and Nc,max(n o) at the solute concentrations

I

1.1 X nsa t and nspin for various solutions. Analysis of Fig.
5 together with the analogous figures for the other super-
saturated solutions studied shows that for all the cases

the critical number size Nc(n 0) is a decreasing function of

solute concentration n o with the following properties: (i)

Nc(n_t(T))=oo, (ii)Nc(nsp(T))=l, and (iii) Nc(T,n o)
has a local maximum at the concentration n o= n0,max(T).
Existence of this local maximum can be understood if one

takes into account that at the concentration n0,max(T) all
ions become associated into the electrically neutral Bier-

rum pairs and electrolyte solution becomes nonelectro-

lyte. This leads to a dramatic change of the solution phy-
sieochemical properties, such as its electrical conductivi-

ty, at the solute concentration n0,max(T).
The estimations performed of the lower Nc, min(T,n O)

and upper Nc, max( T, no) limits of the nucleation critical
number size Nc(T, no) allow determination of simple

analytical expressions for the surface tension a(T) and
the equilibrium bulk energy/3(T) per solute molecule:

TABLE II. In this table all calculated quantities are obtained at T=298 K.

No. Solute a B Sc, min (n_t +0. l ) Sc, min(tispin ) Nc, max(n_t +0.1 ) Nc.... (nspin)

1 NaBr 7.0206 0.2198 4.9374 1 14.4593 1
2 KCI 7.1265 0.1007 9.4578 1 19.8006 1
3 KBr 6.6947 0.1466 6.9080 1 16.5334 1

4 NH2CI 6.4823 0.1662 6.2668 1 16.4945 1
5 (NH4)2SO4 6.8338 0.1292 8.1944 1 33.8936 1
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N (%); N eno)

0 n 20 n o.__ 40

FIG. 5. Dependence of the lower

Nc.min(T, no) and upper Arc.... (T, n0) limits of

the critical number size Nc(T, no) on the mean

solute concentration no at T=298 K for su-

persaturated aqueous solution of ammonium
sulfate.

60 n _,-

solule concentration ( in molal units ), n o

a( T)= --ln[ns_t(T)], /_( T)= --ln[_( T)nsat( T)],

where all concentrations are given in molal units. The

calculated values for a(T) and/3(T) at T = 298 K for the

investigated supersaturated solutions can be found in

Table II.

The conclusions presented above summarize that com-

bination of the high precision SVELT experiments with

the theory developed for supersaturated electrolyte solu-

tions has allowed us to obtain a number of interesting re-

suits in the physics of supersaturated electrolyte solu-
tions.
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